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A circular rigid stamp is in contact with the surface of a viscoelastic half-space. 

The stamp performs forced harmonic oscillations around the axis of symmetry. 
The surface is stress- free everywhere outside the domain of contact. 

Approximate expressions are found for the displacement, the stress under the 
stamp, the moment of the reactive forces acting on the stamp under the assum- 
ption of stationarity of the oscillations and their disappearance at infinity. 

Sagoci [1] obtained the solution of an analogous problem for an elastic half- 
space. 

1. Let us introduce a cylindrical r , cp , z coordinate system with origin at the 
center of the contact domain. By analogy with the elastic problem, only the following 
quantities are not trivial: Us, zlWp’ zrrq the angular displacement and the tangential str - 
esses. The motion of the medium is described by the equation for the elastic displace- 
ment with two boundary conditions 
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where p is the density of the medium, R is the radius of the stamp, lo, is the instanta- 
neous shear modulus, K is the hereditary kernel, o is the frequency, and D is the am- 
plitude of the oscillations. 

In the case of steady oscillations, all the desired quantities can be represented as the 

product of the complex amplitude by an exponential. The effect of the Volterra opera- 
tor on such functions is equivalent to multiplication by some complex number 

t 
p$ (r, 2.) eiot - K (t -z) $ (r, z) e*” dz = p*$ (r, z) eiwt 

m co 

p* = pl + $2 = K (x) cos (ox) ds 1 J + i K(x) sin (OX) dx 0 
Here p* denotes the complex shear modulus. Therefore, the amplitude of the displace- 

ments must satisfy an equation with the boundary conditions 

( &A 1 au 
P* _ar? + -A 

r ar = - po’u 

u=rQ) for z=O,r<R;du/az=O, for z=O,r>R 

(1.1) 

The substitution w = u exp (icp) transforms (1.1) into a Helmholtz equation for w with 
the complex parameter h? = pas / pL*. The boundary conditions become 

UJ = rcD exp (icp) for z = 0, r < R; cb / az = 0 for z = 0, r > R 

2. Let us introduce spheroidal E , q , cp coordinates related to the cylindrical CO- 

ordinates by means of the following expressions: 

r = R [(I + Ea) (1 - q’)l’,“, 2 = MI, rp = ‘P (0 4 E < 00, I ‘1 I < 1) 

The domain E = 0 corresponds to the interior of the circle z = 0, r < R, and the do- 

main 11 = 0 to its exterior. The boundary conditions go over into w (O,q) = R@ (1 - 
lla)ll+iQ, ,,ln’ (g, 0) =.O. Assuming w = 1J (E;) V (q) exp (imq), we obtain an equation for Y 

I(1 - ?) V’ (Ml’ + [h + 9 (1 - 117 - m2/ (1 - ra)l V (9) = 0 (2.1) 

(9 = --po2Ra / p*) 

Here h is the eigenvalue and 9 is a given dimensionless parameter. 

An analogous equation for U is reduced to (2.1) by the substitution E = rn , hence 
it is sufficient to study (2.1) for any complex 11. There results from the boundary cond- 
itions that m = 1, and V’ (0) = O.Therefore, a Sturm-Liouville problem originates for 

(2.1). Equation (2.1) has been studied in detail in l2] by perturbation theory methods. 
The eigenfunctions are sought as series of Bessel functions for 1 11 1 > 1. Within the circle 
1 rl/ < 1 the expansions are constructed with Legendre functions. 

In the case of an elastic medium (the Sagoci problem) tl is real. For a viscoelastic 
medium 8 takes on complex values. Let us assume that Iln r/e> 0. Then as pz - 0 
the solution for the viscoelastic medium goes over into the Sagoci solution. We retain 
the notation from @] with the sole difference that here 0 corresponds to 49 in [2]. 

The condition for the disappearance of the solution at infinity together with the con- 
ditions Im v/o> 0 and tJ (0) = 0 extracts the necessary set of spheroidal wave functions 

(see PI) Ps;+~~ h Wand Sl+o,L ‘($y c--i& 0). The series 
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satisfies the Helmholtz equation and the boundary condition outside the domain of con- 
tact. To determine the coefficients A, we use the condition on the displacement under 
the stamp Q 

Since the Ps~+~,~ are orthogonal, then 

.In =R@ 1 ‘c (1 - ,?)“, ps:+2, dq 
-- -1 I/[ s$$ (- to, 0) i; I Ps;+r,, I2 dq] 

-I1 

Now, if we use the expansion (see p]) 
co 

PSI 1+2n (% (j) = 2 (- i)n+k ‘;+zn, h‘_n @) P;+,l, (11) 
k=o 

and the fact that (1 - r)*)“’ = PI’ (n), then both integrals can be expressed in terms of the 
coefficients &, 12. Therefore 

Let us present the expressions for some quantities 

1 

M = 2np,R3&” 
s r,, (0, r) (i - q2)l’, n dn = 

m” = ; np,R%I# 2 I u:+~~, -n IQ;‘!;; (- a 8) 

7l=0 S$% (- i0 p 0) II Ps:+~~~ 112 
Evidently the amplitude of the stresses grows without limit upon approaching the edge 

of the stamp. 

8. Existing tables of the coefficients of expansions of the spheroidal wave functions 
have been constructed only for real 8. To obtain approximate results in the complex 

domain, let us assume that the parameter 8 is small in absolute value. By using the 
eigenvalue &X expansions presented in [3], the coefficients of the expansions of spher- 
oidal functions as power series in 8 can be determined to the accuracy of a constant 
complex factor. These coefficients are evidently also real for real 13 . If it is required 
in addition that Re u:,~ (0) > 0 and ahSo (0) = 1, then they are constructed uniquely, 
Omitting detailed computations, let us present the principal terms of the following qua- 
ntities. 

(3.1) 
%(I - 1.268) (I - 0.48) 

uq = - R@eiw’Qll (- iE) Pll (n) + . . . 
n 11 - 0.4 (0 + e)] 0 (8) 

4 lGJ(l 
UW = - 3n[1 _o.4;;~;;!?-$‘;;~)(i ++&+%t+“‘+... (3.2) 
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rzo (0, tl) = 
40 - 0.646) 

n@ (6) q 
pLQeiu’ Prl (11) + . . 

M - .16 (I - OX4 ‘) - 
30 (6) 

p,RgQeb’+ . . . 

(3.3) 

(3.4) 

[Q (0) = i-O.840 - 0.i42C.fJ1 (i-0.480)] 

For real 6 we can compare (3.1) - (3.4) with the Sagoci results. Assuming 6 = -0.1~ 
say, we obtain from (3.4Xin the Sagoci notation) -tgA = 0.00858, --rrg, = 0.606, 

xg, = 0.0052,which agrees with the appropriate points of the graphs presented in [ll. 

It follows from (3.1) and (3.3) that the displacements of an elastic and viscoelastic 
medium agree for o = 6 , and the stresses are proportional. This is because only stead 

states are considered, which set in after a long time has elapsed following application 

of the load. 
The solution for a concentrated moment can be obtained from (3.2) and (3.4). Let 

R tend to zero, and 5 to infinity so that Rg tends to a quantity on the order of the di: 

tance from the point of observation to the point of application of the moment. Hence, 
let us magnify the stress under the stamp without limit so that the moment remains COI 

stant in amplitude. Eliminating the quantity RS@,, from (3.2) and (3.4). we obtain 

% 
= -& (+- + ik) ei(ot-kR) 

(R = VW, ,k;= kl - ik?) 

Here k is understood to be the branch of T/gwith positive real part. Since us > 0, the 
also k, > 0, hence the displacement damps out rapidly with distance from the point of 
application of the concentrated moment. 
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